SPSS Converter

Simple utility for converting data to/from SPSS data files

Branch

Unit Tests

latest

Build Status (Travis CI) Code Coverage Status (Codecov) Documentation Status (ReadTheDocs)

v.0.1

Build Status (Travis CI) Code Coverage Status (Codecov) Documentation Status (ReadTheDocs)

Quickstart: Patterns and Best Practices


Installation

To install the SPSS Converter, just execute:

$ pip install spss-converter

Convert between SPSS and CSV

1
2
# Convert "my-spss-file.sav" to "my-csv-file.csv".
spss_converter.to_csv('my-spss-file.sav', target = 'my-csv-file.csv')
1
2
# Convert "my-csv-file.csv" to "my-spss-file.sav"
spss_converter.from_csv('my-csv-file.csv', target = 'my-spss-file.sav')

Convert between SPSS and JSON

1
2
3
4
5
6
7
8
9
# Convert "my-spss-file.sav" to "my-json-file.json" using a "records" layout
spss_converter.to_json('my-spss-file.sav',
                       target = 'my-json-file.json',
                       layout = 'records')

# Convert "my-spss-file.sav" to "my-json-file.json" using a "table" layout
spss_converter.to_json('my-spss-file.sav',
                       target = 'my-json-file.json',
                       layout = 'table')
1
2
3
4
5
6
7
8
9
# Convert "my-json-file.json" to "my-spss-file.sav" using a "records" layout
spss_converter.from_json('my-json-file.json',
                         target = 'my-spss-file.sav',
                         layout = 'records')

# Convert "my-json-file.sav" to "my-spss-file.json" using a "table" layout
spss_converter.from_json('my-json-file.json',
                         target = 'my-spss-file.sav',
                         layout = 'table')

Convert between SPSS and YAML

1
2
3
4
5
6
7
8
9
# Convert "my-spss-file.sav" to "my-yaml-file.yaml" using a "records" layout
spss_converter.to_yaml('my-spss-file.sav',
                       target = 'my-yaml-file.yaml',
                       layout = 'records')

# Convert "my-spss-file.sav" to "my-yaml-file.yaml" using a "table" layout
spss_converter.to_yaml('my-spss-file.sav',
                       target = 'my-yaml-file.yaml',
                       layout = 'table')
1
2
3
4
5
6
7
8
9
# Convert "my-yaml-file.yaml" to "my-spss-file.sav" using a "records" layout
spss_converter.from_yaml('my-yaml-file.yaml',
                         target = 'my-spss-file.sav',
                         layout = 'records')

# Convert "my-yaml-file.sav" to "my-spss-file.yaml" using a "table" layout
spss_converter.from_yaml('my-yaml-file.yaml',
                         target = 'my-spss-file.sav',
                         layout = 'table')

Convert between SPSS and Pandas DataFrame

1
2
# Convert "my-spss-file.sav" to df
df, meta = spss_converter.to_dataframe('my-spss-file.sav')
1
2
# Convert the Pandas DataFrame df to "my-spss-file.sav"
spss_converter.from_dataframe(df, target = 'my-spss-file.sav', metadata = meta)

Convert between SPSS and dict

1
2
3
4
5
6
7
# Convert "my-spss-file.sav" to a dict using a "records" layout
as_dict = spss_converter.to_dict('my-spss-file.sav',
                                 layout = 'records')

# Convert "my-spss-file.sav" to a dict using a "table" layout
as_dict = spss_converter.to_dict('my-spss-file.sav',
                                 layout = 'table')
1
2
3
# Convert as_dict to "my-spss-file.sav"
spss_converter.from_dict(as_dict,
                         target = 'my-spss-file.sav')

Convert between SPSS and Excel

1
2
# Convert "my-spss-file.sav" to "my-excel-file.xlsx".
spss_converter.to_excel('my-spss-file.sav', target = 'my-excel-file.xlsx')
1
2
# Convert "my-csv-file.csv" to "my-spss-file.sav"
spss_converter.from_excel('my-excel-file.xlsx', target = 'my-spss-file.sav')

Get the Metadata from an SPSS File

1
2
# Retrieve Metadata from the SPSS file "my-spss-file.sav"
meta = spss_converter.get_metadata('my-spss-file.sav')

Change the Metadata for a Given DataFrame

1
2
# Apply the metadata in updated_meta to the dataframe in df.
spss_converter.apply_metadata(df, updated_meta)

Using the SPSS Converter


Introduction

The SPSS Converter library is a simple wrapper around the Pyreadstat and Pandas libraries that provides a clean and simple API for reading data files in a variety of formats and converting them to a variety of formats. The semantics are super simple, and should be as simple as: spss_converter.to_csv('my-spss-file.sav') or spss_converter.from_json('my-json-file.json').


Converting Data from SPSS

To read from SPSS files and convert them to a different format you can use functions whose names start with spss_converter.to_*. The examples below provide specifics:

Converting to Pandas DataFrame

To convert from an SPSS file to a Pandas DataFrame, simply call the to_dataframe() function:

import spss_converter

df, metadata = spss_converter.to_dataframe('my-spss-file.sav')

The code above will read your data from the file my-spss-file.sav, convert it into a Pandas DataFrame, and generate an spss_converter.Metadata representation of the SPSS file’s meta-data, which includes its data map, labeling, etc.

See also

Converting to CSV

To read data from an SPSS file and convert it into a CSV file, simply call the to_csv() function:

import spss_converter

as_csv = spss_converter.to_csv('my-spss-file.sav')
# Will store the contents of the CSV as a string in as_csv.

spss_converter.to_csv('my-spss-file.sav', target = 'my-csv-file.csv')
# Will save the CSV data to the file my-csv-file.csv.

Both lines of code above will read the SPSS data from my-spss-file.sav, but the first line will store it in the str variable as_csv. The second will instead write it to the file my-csv-file.csv.

See also

Converting to JSON

To read data from an SPSS file and convert it into a JSON object, simply call the to_json() function:

import spss_converter

as_json = spss_converter.to_json('my-spss-file.sav', layout = 'records')
# Stores the JSON data as a string in the variable as_json.

spss_converter.to_json('my-spss-file.sav',
                       target = 'my-json-file.json',
                       layout = 'records')
# Stores the JSON data in the file "my-json-file.json".
import spss_converter

as_json = spss_converter.to_json('my-spss-file.sav', layout = 'table')
# Stores the JSON data as a string in the variable as_json.

spss_converter.to_json('my-spss-file.sav',
                       target = 'my-json-file.json',
                       layout = 'table')
# Stores the JSON data in the file "my-json-file.json".

The SPSS Converter supports two different layouts for JSON representation of data:

  • Records. This layout returns a JSON collection (array) of JSON objects. Each object in the collection represents one record from the SPSS file. The object is a a set of key/value pairs where each key represents a variable/column in the SPSS file and its value represents the value of that variable/column for that respondent. This is the default layout.

  • Table. This layout returns a JSON object that includes a schema with the data map, and a separate data key which contains a collection (array) of objects where each object represents a single record from the SPSS data file.

Note

If no target is supplied, then the JSON representation is stored in-memory in the return value. If a target is supplied, then the JSON representation will be written to this file.

See also

Converting to YAML

To read data from an SPSS file and convert it into a YAML object, simply call the to_yaml() function:

import spss_converter

as_yaml = spss_converter.to_yaml('my-spss-file.sav', layout = 'records')
# Stores the YAML data as a string in the variable as_yaml.

spss_converter.to_yaml('my-spss-file.sav',
                       target = 'my-yaml-file.yaml',
                       layout = 'records')
# Stores the YAML data in the file "my-yaml-file.yaml".
import spss_converter

as_yaml = spss_converter.to_yaml('my-spss-file.sav', layout = 'table')
# Stores the YAML data as a string in the variable as_yaml.

spss_converter.to_yaml('my-spss-file.sav',
                       target = 'my-yaml-file.yaml',
                       layout = 'table')
# Stores the YAML data in the file "my-yaml-file.yaml".

The SPSS Converter supports two different layouts for YAML representation of data:

  • Records. This layout returns a YAML collection (array) of YAML objects. Each object in the collection represents one record from the SPSS file. The object is a a set of key/value pairs where each key represents a variable/column in the SPSS file and its value represents the value of that variable/column for that respondent. This is the default layout.

  • Table. This layout returns a YAML object that includes a schema with the data map, and a separate data key which contains a collection (array) of objects where each object represents a single record from the SPSS data file.

Note

If no target is supplied, then the YAML representation is stored in-memory in the return value. If a target is supplied, then the JSON representation will be written to this file.

See also

Converting to Excel

To read data from an SPSS file and convert it into a Microsoft Excel file, simply call the to_excel() function:

import spss_converter

as_excel = spss_converter.to_excel('my-spss-file.sav')
# Will store the contents of the Excel file as a binary object in as_excel.

spss_converter.to_excel('my-spss-file.sav', target = 'my-excel-file.xlsx')
# Will save the Excel data to the file my-excel-file.xlsx.

Both lines of code above will read the SPSS data from my-spss-file.sav, but the first line will store it in the bytes variable as_excel. The second will instead write it to the file my-excel-file.xlsx.

See also

Converting to dict

To read data from an SPSS file and convert it into a dict object, simply call the to_dict() function:

import spss_converter

as_dict = spss_converter.to_dict('my-spss-file.sav', layout = 'records')
# Stores the data as a dict or list of dict in the variable as_dict.
import spss_converter

as_dict = spss_converter.to_dict('my-spss-file.sav', layout = 'table')
# Stores the data as a dict or list of dict in the variable as_dict.

The SPSS Converter supports two different layouts for dict representation of data:

  • Records. This layout returns a list of dict objects. Each object in the list represents one record from the SPSS file. The object is a dict whose keys each represent a variable/column in the SPSS file and whose values represent the value of that variable/column for that respondent. This is the default layout.

  • Table. This layout returns a dict object that includes a schema key with the data map, and a separate data key which contains a list of objects where each object represents a single record from the SPSS data file.

See also


Converting Data to SPSS

To convert other sources of data to SPSS format, you can simply use any function whose names start with spss_converter.from_*. The examples below provide specifics:

Converting from Pandas DataFrame

To generate an SPSS file from a Pandas DataFrame, simply call the from_dataframe() function:

Note

The examples below all assume that the variable df contains the DataFrame whose data will be converted to SPSS format and the variable meta contains the Metadata that describes that data frame.

import spss_converter

as_spss = spss_converter.from_dataframe(df, metadata = meta)
# Will store the SPSS data in-memory in a binary bytes object named as_spss.

spss_converter.from_dataframe(df, target = 'my-spss-file.sav', metadata = meta)
# Will store the SPSS data to the hard drive in the file named "my-spss-file.sav".

The code above will convert the data in the DataFrame named df, and generate it in SPSS format either in-memory or on the hard drive.

See also

Converting from CSV

To read data from a CSV file and convert it into SPSS format, simply call the from_csv() function:

import spss_converter

as_spss = spss_converter.from_csv('my-csv-file.csv')
# Will store the contents of the CSV file as an in-memory binary object called as_spss.

spss_converter.from_csv('my-csv-file.csv', target = 'my-spss-file.sav')
# Will save the CSV data to the file my-spss-file.sav.

Both lines of code above will read the data from my-csv-file.csv, but the first line will store it in the bytesIO variable as_spss. The second will instead write it to the file my-spss-file.sav.

See also

Converting from dict

To read data from a dict and convert it into an SPSS format, simply call the from_dict() function:

import spss_converter

as_spss = spss_converter.from_dict(as_dict)
# Stores the data in-memory in the variable as_spss.

spss_converter.from_dict(as_dict, target = 'my-spss-file.sav')
# Stores the data on the hard drive in the file named "my-spss-file.sav".

See also

Converting from JSON

To read data from a JSON file and convert it into SPSS format, simply call the from_json() function:

import spss_converter

as_spss = spss_converter.from_json('my-json-file.json', layout = 'records')
# Stores the SPSS data in-memory in the variable as_spss.

spss_converter.from_json('my-json-file.json',
                         target = 'my-spss-file.sav',
                         layout = 'records')
# Stores the SPSS data in the file "my-spss-file.sav".
import spss_converter

as_spss = spss_converter.from_json('my-json-file.json', layout = 'table')
# Stores the SPSS data in-memory in the variable as_spss.

spss_converter.from_json('my-json-file.json',
                         target = 'my-spss-file.sav',
                         layout = 'table')
# Stores the SPSS data in the file "my-spss-file.sav".

The SPSS Converter supports two different layouts for JSON representation of data:

  • Records. This layout expects a JSON collection (array) of JSON objects. Each object in the collection represents one record in the SPSS file. The object is a a set of key/value pairs where each key represents a variable/column in the SPSS file and its value represents the value of that variable/column for that respondent. This is the default layout.

  • Table. This layout returns a JSON object that includes a schema with the data map, and a separate data key which contains a collection (array) of objects where each object represents a single record in the SPSS data file.

Note

If no target is supplied, then the SPSS representation is stored in-memory in the return value. If a target is supplied, then the SPSS representation will be written to this file.

Tip

The from_json() function can accept either a filename or a string with JSON data.

See also

Converting from YAML

To read data from a YAML file and convert it into SPSS format, simply call the from_yaml() function:

import spss_converter

as_spss = spss_converter.from_yaml('my-yaml-file.yaml', layout = 'records')
# Stores the SPSS data in-memory in the variable as_spss.

spss_converter.from_yaml('my-yaml-file.yaml',
                         target = 'my-spss-file.sav',
                         layout = 'records')
# Stores the SPSS data in the file "my-spss-file.sav".
import spss_converter

as_spss = spss_converter.from_yaml('my-yaml-file.yaml', layout = 'table')
# Stores the SPSS data in-memory in the variable as_spss.

spss_converter.from_yaml('my-yaml-file.yaml',
                         target = 'my-spss-file.sav',
                         layout = 'table')
# Stores the SPSS data in the file "my-spss-file.sav".

The SPSS Converter supports two different layouts for YAML representation of data:

  • Records. This layout expects a YAML collection (array) of YAML objects. Each object in the collection represents one record in the SPSS file. The object is a a set of key/value pairs where each key represents a variable/column in the SPSS file and its value represents the value of that variable/column for that respondent. This is the default layout.

  • Table. This layout returns a YAML object that includes a schema with the data map, and a separate data key which contains a collection (array) of objects where each object represents a single record in the SPSS data file.

Note

If no target is supplied, then the SPSS representation is stored in-memory in the return value. If a target is supplied, then the SPSS representation will be written to this file.

Tip

The from_yaml() function can accept either a filename or a string with YAML data.

See also

Converting to Excel

To read data from an Excel file and convert it into SPSS format, simply call the from_excel() function:

import spss_converter

as_excel = spss_converter.from_excel('my-excel-file.xlsx')
# Will store the contents of the SPSS data as a binary object in-memory in as_excel.

spss_converter.from_excel('my-excel-file.xlsx', target = 'my-spss-file.sav')
# Will save the SPSS data to the file my-spss-file.xlsx.

Both lines of code above will read the data from my-excel-file.xlsx, but the first line will store it in the bytes variable as_excel. The second will instead write it to the file my-spss-file.sav.

See also


Working with Metadata

Key to working with SPSS data is understanding the distinction between the raw data’s storage format and the metadata that describes that data. Fundamentally, think of metadata as the map of how a value stored in the raw data (such as a numerical value 1) can actually represent a human-readable labeled value (such as the labeled value "Female").

The metadata for an SPSS file can itself be quite verbose and define various rules for what can and should be expected when analyzing the records in the SPSS file. Within the SPSS Converter, this meta-data is represented using the Metadata class.

Various functions that read SPSS data produce Metadata instances, and these instances can be manipulated to restate and adjust the human-readable labels applied to your SPSS data.

API Reference


Reading Data from SPSS

to_dataframe

to_dataframe(data: Union[bytes, _io.BytesIO, os.PathLike[Any]], limit: Optional[int] = None, offset: int = 0, exclude_variables: Optional[List[str]] = None, include_variables: Optional[List[str]] = None, metadata_only: bool = False, apply_labels: bool = False, labels_as_categories: bool = True, missing_as_NaN: bool = False, convert_datetimes: bool = True, dates_as_datetime64: bool = False, **kwargs)[source]

Reads SPSS data and returns a tuple with a Pandas DataFrame object and relevant Metadata.

Parameters
  • data (Path-like filename, bytes or BytesIO) – The SPSS data to load. Accepts either a series of bytes or a filename.

  • limit (int or None) – The number of records to read from the data. If None will return all records. Defaults to None.

  • offset (int) – The record at which to start reading the data. Defaults to 0 (first record).

  • exclude_variables (iterable of str or None) – A list of the variables that should be ignored when reading data. Defaults to None.

  • include_variables (iterable of str or None) – A list of the variables that should be explicitly included when reading data. Defaults to None.

  • metadata_only (bool) – If True, will return no data records in the resulting DataFrame but will return a complete Metadata instance. Defaults to False.

  • apply_labels (bool) – If True, converts the numerically-coded values in the raw data to their human-readable labels. Defaults to False.

  • labels_as_categories (bool) –

    If True, will convert labeled or formatted values to Pandas categories. Defaults to True.

    Caution

    This parameter will only have an effect if the apply_labels parameter is True.

  • missing_as_NaN (bool) – If True, will return any missing values as NaN. Otherwise will return missing values as per the configuration of missing value representation stored in the underlying SPSS data. Defaults to False, which applies the missing value representation configured in the SPSS data itself.

  • convert_datetimes (bool) – if True, will convert the native integer representation of datetime values in the SPSS data to Pythonic datetime, or date, etc. representations (or Pandas datetime64, depending on the dates_as_datetime64 parameter). If False, will leave the original integer representation. Defaults to True.

  • dates_as_datetime64 (bool) –

    If True, will return any date values as Pandas datetime64 types. Defaults to False.

    Caution

    This parameter is only applied if convert_datetimes is set to True.

Returns

A DataFrame representation of the SPSS data (or None) and a Metadata representation of the data’s meta-data (value and labels / data map).

Return type

pandas.DataFrame/None and Metadata


to_csv

to_csv(data: Union[os.PathLike[Any], _io.BytesIO, bytes], target: Optional[Union[os.PathLike[Any], _io.StringIO]] = None, include_header: bool = True, delimter: str = '|', null_text: str = 'NaN', wrapper_character: str = "'", escape_character: str = '\\', line_terminator: str = '\r\n', decimal: str = '.', limit: Optional[int] = None, offset: int = 0, exclude_variables: Optional[List[str]] = None, include_variables: Optional[List[str]] = None, metadata_only: bool = False, apply_labels: bool = False, labels_as_categories: bool = True, missing_as_NaN: bool = False, convert_datetimes: bool = True, dates_as_datetime64: bool = False, **kwargs)[source]

Convert the SPSS data into a CSV string where each row represents a record of SPSS data.

Parameters
  • data (Path-like filename, bytes or BytesIO) – The SPSS data to load. Accepts either a series of bytes or a filename.

  • target (Path-like / StringIO / str / None) – The destination where the CSV representation should be stored. Accepts either a filename, file-pointer or a StringIO, or None. If None, will return a str object stored in-memory. Defaults to None.

  • include_header (bool) – If True, will include a header row with column labels. If False, will not include a header row. Defaults to True.

  • delimiter (str) – The delimiter used between columns. Defaults to |.

  • null_text (str) – The text value to use in place of empty values. Only applies if wrap_empty_values is True. Defaults to 'NaN'.

  • wrapper_character (str) – The string used to wrap string values when wrapping is necessary. Defaults to '.

  • escape_character (str) – The character to use when escaping nested wrapper characters. Defaults to \.

  • line_terminator (str) – The character used to mark the end of a line. Defaults to \r\n.

  • decimal (str) – The character used to indicate a decimal place in a numerical value. Defaults to ..

  • limit (int or None) – The number of records to read from the data. If None will return all records. Defaults to None.

  • offset (int) – The record at which to start reading the data. Defaults to 0 (first record).

  • exclude_variables (iterable of str or None) – A list of the variables that should be ignored when reading data. Defaults to None.

  • include_variables (iterable of str or None) – A list of the variables that should be explicitly included when reading data. Defaults to None.

  • metadata_only (bool) – If True, will return no data records in the resulting DataFrame but will return a complete Metadata instance. Defaults to False.

  • apply_labels (bool) – If True, converts the numerically-coded values in the raw data to their human-readable labels. Defaults to False.

  • labels_as_categories (bool) –

    If True, will convert labeled or formatted values to Pandas categories. Defaults to True.

    Caution

    This parameter will only have an effect if the apply_labels parameter is True.

  • missing_as_NaN (bool) – If True, will return any missing values as NaN. Otherwise will return missing values as per the configuration of missing value representation stored in the underlying SPSS data. Defaults to False, which applies the missing value representation configured in the SPSS data itself.

  • convert_datetimes (bool) – if True, will convert the native integer representation of datetime values in the SPSS data to Pythonic datetime, or date, etc. representations (or Pandas datetime64, depending on the dates_as_datetime64 parameter). If False, will leave the original integer representation. Defaults to True.

  • dates_as_datetime64 (bool) –

    If True, will return any date values as Pandas datetime64 types. Defaults to False.

    Caution

    This parameter is only applied if convert_datetimes is set to True.

Returns

None if target was not None, otherwise a str representation of the CSV file.

Return type

None or str


to_excel

to_excel(data: Union[os.PathLike[Any], _io.BytesIO, bytes], target: Optional[Union[os.PathLike[Any], _io.BytesIO, pandas.io.excel._base.ExcelWriter]] = None, sheet_name: str = 'Sheet1', start_row: int = 0, start_column: int = 0, null_text: str = 'NaN', include_header: bool = True, limit: Optional[int] = None, offset: int = 0, exclude_variables: Optional[List[str]] = None, include_variables: Optional[List[str]] = None, metadata_only: bool = False, apply_labels: bool = False, labels_as_categories: bool = True, missing_as_NaN: bool = False, convert_datetimes: bool = True, dates_as_datetime64: bool = False, **kwargs)[source]

Convert the SPSS data into an Excel file where each row represents a record of SPSS data.

Parameters
  • data (Path-like filename, bytes or BytesIO) – The SPSS data to load. Accepts either a series of bytes or a filename.

  • target (Path-like / BytesIO / ExcelWriter) – The destination where the Excel file should be stored. Accepts either a filename, file-pointer or a BytesIO, or an ExcelWriter instance.

  • sheet_name (str) – The worksheet on which the SPSS data should be written. Defaults to 'Sheet1'.

  • start_row (int) – The row number (starting at 0) where the SPSS data should begin. Defaults to 0.

  • start_column (int) – The column number (starting at 0) where the SPSS data should begin. Defaults to 0.

  • null_text (str) – The way that missing values should be represented in the Excel file. Defaults to '' (an empty string).

  • include_header (bool) – If True, will include a header row with column labels. If False, will not include a header row. Defaults to True.

  • limit (int or None) – The number of records to read from the data. If None will return all records. Defaults to None.

  • offset (int) – The record at which to start reading the data. Defaults to 0 (first record).

  • exclude_variables (iterable of str or None) – A list of the variables that should be ignored when reading data. Defaults to None.

  • include_variables (iterable of str or None) – A list of the variables that should be explicitly included when reading data. Defaults to None.

  • metadata_only (bool) – If True, will return no data records in the resulting DataFrame but will return a complete Metadata instance. Defaults to False.

  • apply_labels (bool) – If True, converts the numerically-coded values in the raw data to their human-readable labels. Defaults to False.

  • labels_as_categories (bool) –

    If True, will convert labeled or formatted values to Pandas categories. Defaults to True.

    Caution

    This parameter will only have an effect if the apply_labels parameter is True.

  • missing_as_NaN (bool) – If True, will return any missing values as NaN. Otherwise will return missing values as per the configuration of missing value representation stored in the underlying SPSS data. Defaults to False, which applies the missing value representation configured in the SPSS data itself.

  • convert_datetimes (bool) – if True, will convert the native integer representation of datetime values in the SPSS data to Pythonic datetime, or date, etc. representations (or Pandas datetime64, depending on the dates_as_datetime64 parameter). If False, will leave the original integer representation. Defaults to True.

  • dates_as_datetime64 (bool) –

    If True, will return any date values as Pandas datetime64 types. Defaults to False.

    Caution

    This parameter is only applied if convert_datetimes is set to True.

Returns

None if target was not None, otherwise a BytesIO representation of the Excel file.

Return type

None or str


to_json

to_json(data: Union[os.PathLike[Any], _io.BytesIO, bytes], target: Optional[Union[os.PathLike[Any], _io.StringIO]] = None, layout: str = 'records', double_precision: int = 10, limit: Optional[int] = None, offset: int = 0, exclude_variables: Optional[List[str]] = None, include_variables: Optional[List[str]] = None, metadata_only: bool = False, apply_labels: bool = False, labels_as_categories: bool = True, missing_as_NaN: bool = False, convert_datetimes: bool = True, dates_as_datetime64: bool = False, **kwargs)[source]

Convert the SPSS data into a JSON string.

Parameters
  • data (Path-like filename, bytes or BytesIO) – The SPSS data to load. Accepts either a series of bytes or a filename.

  • target (Path-like / StringIO / str / None) – The destination where the JSON representation should be stored. Accepts either a filename, file-pointer or StringIO, or None. If None, will return a str object stored in-memory. Defaults to None.

  • layout (str) –

    Indicates the layout schema to use for the JSON representation of the data. Accepts:

    • records, where the resulting JSON object represents an array of objects where each object corresponds to a single record, with key/value pairs for each column and that record’s corresponding value

    • table, where the resulting JSON object contains a metadata (data map) describing the data schema along with the resulting collection of record objects

    Defaults to records.

  • double_precision (class:int <python:int>) – Indicates the precision (places beyond the decimal point) to apply for floating point values. Defaults to 10.

  • limit (int or None) – The number of records to read from the data. If None will return all records. Defaults to None.

  • offset (int) – The record at which to start reading the data. Defaults to 0 (first record).

  • exclude_variables (iterable of str or None) – A list of the variables that should be ignored when reading data. Defaults to None.

  • include_variables (iterable of str or None) – A list of the variables that should be explicitly included when reading data. Defaults to None.

  • metadata_only (bool) – If True, will return no data records in the resulting DataFrame but will return a complete Metadata instance. Defaults to False.

  • apply_labels (bool) – If True, converts the numerically-coded values in the raw data to their human-readable labels. Defaults to False.

  • labels_as_categories (bool) –

    If True, will convert labeled or formatted values to Pandas categories. Defaults to True.

    Caution

    This parameter will only have an effect if the apply_labels parameter is True.

  • missing_as_NaN (bool) – If True, will return any missing values as NaN. Otherwise will return missing values as per the configuration of missing value representation stored in the underlying SPSS data. Defaults to False, which applies the missing value representation configured in the SPSS data itself.

  • convert_datetimes (bool) – if True, will convert the native integer representation of datetime values in the SPSS data to Pythonic datetime, or date, etc. representations (or Pandas datetime64, depending on the dates_as_datetime64 parameter). If False, will leave the original integer representation. Defaults to True.

  • dates_as_datetime64 (bool) –

    If True, will return any date values as Pandas datetime64 types. Defaults to False.

    Caution

    This parameter is only applied if convert_datetimes is set to True.

Returns

None if target was not None, otherwise a str representation of the JSON output.

Return type

None or str


to_yaml

to_yaml(data: Union[os.PathLike[Any], _io.BytesIO, bytes], target: Optional[Union[os.PathLike[Any], _io.StringIO]] = None, layout: str = 'records', double_precision: int = 10, limit: Optional[int] = None, offset: int = 0, exclude_variables: Optional[List[str]] = None, include_variables: Optional[List[str]] = None, metadata_only: bool = False, apply_labels: bool = False, labels_as_categories: bool = True, missing_as_NaN: bool = False, convert_datetimes: bool = True, dates_as_datetime64: bool = False, **kwargs)[source]

Convert the SPSS data into a YAML string.

Parameters
  • data (Path-like filename, bytes or BytesIO) – The SPSS data to load. Accepts either a series of bytes or a filename.

  • target (Path-like / StringIO / str / None) – The destination where the YAML representation should be stored. Accepts either a filename, file-pointer or StringIO, or None. If None, will return a str object stored in-memory. Defaults to None.

  • layout (str) –

    Indicates the layout schema to use for the JSON representation of the data. Accepts:

    • records, where the resulting YAML object represents an array of objects where each object corresponds to a single record, with key/value pairs for each column and that record’s corresponding value

    • table, where the resulting JSON object contains a metadata (data map) describing the data schema along with the resulting collection of record objects

    Defaults to records.

  • double_precision (class:int <python:int>) – Indicates the precision (places beyond the decimal point) to apply for floating point values. Defaults to 10.

  • limit (int or None) – The number of records to read from the data. If None will return all records. Defaults to None.

  • offset (int) – The record at which to start reading the data. Defaults to 0 (first record).

  • exclude_variables (iterable of str or None) – A list of the variables that should be ignored when reading data. Defaults to None.

  • include_variables (iterable of str or None) – A list of the variables that should be explicitly included when reading data. Defaults to None.

  • metadata_only (bool) – If True, will return no data records in the resulting DataFrame but will return a complete Metadata instance. Defaults to False.

  • apply_labels (bool) – If True, converts the numerically-coded values in the raw data to their human-readable labels. Defaults to False.

  • labels_as_categories (bool) –

    If True, will convert labeled or formatted values to Pandas categories. Defaults to True.

    Caution

    This parameter will only have an effect if the apply_labels parameter is True.

  • missing_as_NaN (bool) – If True, will return any missing values as NaN. Otherwise will return missing values as per the configuration of missing value representation stored in the underlying SPSS data. Defaults to False, which applies the missing value representation configured in the SPSS data itself.

  • convert_datetimes (bool) – if True, will convert the native integer representation of datetime values in the SPSS data to Pythonic datetime, or date, etc. representations (or Pandas datetime64, depending on the dates_as_datetime64 parameter). If False, will leave the original integer representation. Defaults to True.

  • dates_as_datetime64 (bool) –

    If True, will return any date values as Pandas datetime64 types. Defaults to False.

    Caution

    This parameter is only applied if convert_datetimes is set to True.

Returns

None if target was not None, otherwise a str representation of the YAML output.

Return type

None or str


to_dict

to_dict(data: Union[os.PathLike[Any], _io.BytesIO, bytes], layout: str = 'records', double_precision: int = 10, limit: Optional[int] = None, offset: int = 0, exclude_variables: Optional[List[str]] = None, include_variables: Optional[List[str]] = None, metadata_only: bool = False, apply_labels: bool = False, labels_as_categories: bool = True, missing_as_NaN: bool = False, convert_datetimes: bool = True, dates_as_datetime64: bool = False, **kwargs)[source]

Convert the SPSS data into a Python dict.

Parameters
  • data (Path-like filename, bytes or BytesIO) – The SPSS data to load. Accepts either a series of bytes or a filename.

  • layout (str) –

    Indicates the layout schema to use for the JSON representation of the data. Accepts:

    • records, where the resulting YAML object represents an array of objects where each object corresponds to a single record, with key/value pairs for each column and that record’s corresponding value

    • table, where the resulting JSON object contains a metadata (data map) describing the data schema along with the resulting collection of record objects

    Defaults to records.

  • double_precision (class:int <python:int>) – Indicates the precision (places beyond the decimal point) to apply for floating point values. Defaults to 10.

  • limit (int or None) – The number of records to read from the data. If None will return all records. Defaults to None.

  • offset (int) – The record at which to start reading the data. Defaults to 0 (first record).

  • exclude_variables (iterable of str or None) – A list of the variables that should be ignored when reading data. Defaults to None.

  • include_variables (iterable of str or None) – A list of the variables that should be explicitly included when reading data. Defaults to None.

  • metadata_only (bool) – If True, will return no data records in the resulting DataFrame but will return a complete Metadata instance. Defaults to False.

  • apply_labels (bool) – If True, converts the numerically-coded values in the raw data to their human-readable labels. Defaults to False.

  • labels_as_categories (bool) –

    If True, will convert labeled or formatted values to Pandas categories. Defaults to True.

    Caution

    This parameter will only have an effect if the apply_labels parameter is True.

  • missing_as_NaN (bool) – If True, will return any missing values as NaN. Otherwise will return missing values as per the configuration of missing value representation stored in the underlying SPSS data. Defaults to False, which applies the missing value representation configured in the SPSS data itself.

  • convert_datetimes (bool) – if True, will convert the native integer representation of datetime values in the SPSS data to Pythonic datetime, or date, etc. representations (or Pandas datetime64, depending on the dates_as_datetime64 parameter). If False, will leave the original integer representation. Defaults to True.

  • dates_as_datetime64 (bool) –

    If True, will return any date values as Pandas datetime64 types. Defaults to False.

    Caution

    This parameter is only applied if convert_datetimes is set to True.

Returns

None if target was not None, otherwise a list of dict if layout is records, or a dict if layout is table.

Return type

None or str


get_metadata

get_metadata(data)[source]

Retrieve the metadata that describes the coded representation of the data, corresponding formatting information, and their related human-readable labels.

Parameters

data (Path-like filename, bytes or BytesIO) – The SPSS data to load. Accepts either a series of bytes or a filename.

Returns

The metadata that describes the raw data and its corresponding labels.

Return type

Metadata


Writing Data to SPSS

from_dataframe

from_dataframe(df: pandas.core.frame.DataFrame, target: Optional[Union[PathLike[Any], _io.BytesIO]] = None, metadata: Optional[spss_converter.Metadata.Metadata] = None, compress: bool = False)[source]

Create an SPSS dataset from a Pandas DataFrame.

Parameters
  • df (pandas.DataFrame) – The DataFrame to serialize to an SPSS dataset.

  • target (Path-like / BytesIO / None) – The target to which the SPSS dataset should be written. Accepts either a filename/path, a BytesIO object, or None. If None will return a BytesIO object containing the SPSS dataset. Defaults to None.

  • metadata (Metadata / None) – The Metadata associated with the dataset. If None, will attempt to derive it form df. Defaults to None.

  • compress (bool) – If True, will return data in the compressed ZSAV format. If False, will return data in the standards SAV format. Defaults to False.

Returns

A BytesIO object containing the SPSS data if target is None or not a filename, otherwise None

Return type

BytesIO or None

Raises

from_csv

from_csv(as_csv: Union[str, PathLike[Any], _io.BytesIO], target: Optional[Union[PathLike[Any], _io.BytesIO]] = None, compress: bool = False, delimiter='|', **kwargs)[source]

Convert a CSV file into an SPSS dataset.

Tip

If you pass any additional keyword arguments, those keyword arguments will be passed onto the pandas.read_csv() function.

Parameters
  • as_csv (str / File-location / BytesIO) – The CSV data that you wish to convert into an SPSS dataset.

  • target (Path-like / BytesIO / None) – The target to which the SPSS dataset should be written. Accepts either a filename/path, a BytesIO object, or None. If None will return a BytesIO object containing the SPSS dataset. Defaults to None.

  • compress (bool) – If True, will return data in the compressed ZSAV format. If False, will return data in the standards SAV format. Defaults to False.

  • delimiter (str) – The delimiter used between columns. Defaults to |.

  • kwargs (dict) – Additional keyword arguments which will be passed onto the pandas.read_csv() function.

Returns

A BytesIO object containing the SPSS data if target is None or not a filename, otherwise None

Return type

BytesIO or None


from_excel

from_excel(as_excel, target: Optional[Union[PathLike[Any], _io.BytesIO]] = None, compress: bool = False, **kwargs)[source]

Convert Excel data into an SPSS dataset.

Tip

If you pass any additional keyword arguments, those keyword arguments will be passed onto the pandas.read_excel() function.

Parameters
  • as_excel (str / File-location / BytesIO / bytes / ExcelFile) – The Excel data that you wish to convert into an SPSS dataset.

  • target (Path-like / BytesIO / None) – The target to which the SPSS dataset should be written. Accepts either a filename/path, a BytesIO object, or None. If None will return a BytesIO object containing the SPSS dataset. Defaults to None.

  • compress (bool) – If True, will return data in the compressed ZSAV format. If False, will return data in the standards SAV format. Defaults to False.

  • kwargs (dict) – Additional keyword arguments which will be passed onto the pandas.read_excel() function.

Returns

A BytesIO object containing the SPSS data if target is None or not a filename, otherwise None

Return type

BytesIO or None


from_json

from_json(as_json: Union[str, PathLike[Any], _io.BytesIO], target: Optional[Union[PathLike[Any], _io.BytesIO]] = None, compress: bool = False, **kwargs)[source]

Convert JSON data into an SPSS dataset.

Tip

If you pass any additional keyword arguments, those keyword arguments will be passed onto the pandas.read_json() function.

Parameters
  • as_json (str / File-location / BytesIO) – The JSON data that you wish to convert into an SPSS dataset.

  • target (Path-like / BytesIO / None) – The target to which the SPSS dataset should be written. Accepts either a filename/path, a BytesIO object, or None. If None will return a BytesIO object containing the SPSS dataset. Defaults to None.

  • compress (bool) – If True, will return data in the compressed ZSAV format. If False, will return data in the standards SAV format. Defaults to False.

  • kwargs (dict) – Additional keyword arguments which will be passed onto the pandas.read_json() function.

Returns

A BytesIO object containing the SPSS data if target is None or not a filename, otherwise None

Return type

BytesIO or None


from_yaml

from_yaml(as_yaml: Union[str, PathLike[Any], _io.BytesIO], target: Optional[Union[PathLike[Any], _io.BytesIO]] = None, compress: bool = False, **kwargs)[source]

Convert YAML data into an SPSS dataset.

Tip

If you pass any additional keyword arguments, those keyword arguments will be passed onto the DataFrame.from_dict() method.

Parameters
  • as_yaml (str / File-location / BytesIO) – The YAML data that you wish to convert into an SPSS dataset.

  • target (Path-like / BytesIO / None) – The target to which the SPSS dataset should be written. Accepts either a filename/path, a BytesIO object, or None. If None will return a BytesIO object containing the SPSS dataset. Defaults to None.

  • compress (bool) – If True, will return data in the compressed ZSAV format. If False, will return data in the standards SAV format. Defaults to False.

  • kwargs (dict) – Additional keyword arguments which will be passed onto the DataFrame.from_dict() method.

Returns

A BytesIO object containing the SPSS data if target is None or not a filename, otherwise None

Return type

BytesIO or None


from_dict

from_dict(as_dict: dict, target: Optional[Union[PathLike[Any], _io.BytesIO]] = None, compress: bool = False, **kwargs)[source]

Convert a dict object into an SPSS dataset.

Tip

If you pass any additional keyword arguments, those keyword arguments will be passed onto the DataFrame.from_dict() method.

Parameters
  • as_dict (dict) – The dict data that you wish to convert into an SPSS dataset.

  • target (Path-like / BytesIO / None) – The target to which the SPSS dataset should be written. Accepts either a filename/path, a BytesIO object, or None. If None will return a BytesIO object containing the SPSS dataset. Defaults to None.

  • compress (bool) – If True, will return data in the compressed ZSAV format. If False, will return data in the standards SAV format. Defaults to False.

  • kwargs (dict) – Additional keyword arguments which will be passed onto the DataFrame.from_dict() method.

Returns

A BytesIO object containing the SPSS data if target is None or not a filename, otherwise None

Return type

BytesIO or None


apply_metadata

apply_metadata(df: pandas.core.frame.DataFrame, metadata: Union[spss_converter.Metadata.Metadata, dict, pyreadstat._readstat_parser.metadata_container], as_category: bool = True)[source]

Updates the DataFrame df based on the metadata.

Parameters
  • df (pandas.DataFrame) – The DataFrame to update.

  • metadata (Metadata, pyreadstat.metadata_container, or compatible dict) – The Metadata to apply to df.

  • as_category (bool) – if True, will variables with formats will be transformed into categories in the DataFrame. Defaults to True.

Returns

A copy of df updated to reflect metadata.

Return type

DataFrame


Utility Classes

Metadata

class Metadata(**kwargs)[source]

Object representation of metadata retrieved from an SPSS file.

classmethod from_dict(as_dict: dict)[source]

Create a Metadata instance from a dict representation.

Parameters

as_dict (dict) – A dict representation of the Metadata.

Returns

A Metadata instance

Return type

Metadata

classmethod from_pyreadstat(as_metadata)[source]

Create a Metadata instance from a Pyreadstat metadata object.

Parameters

as_metadata (Pyreadstat.metadata_container) –

The Pyreadstat metadata object from which the Metadata instance should be created.

Returns

The Metadata instance.

Return type

Metadata

to_dict()dict[source]

Return a dict representation of the instance.

Return type

dict

to_pyreadstat()[source]

Create a Pyreadstat metadata representation of the Metadata instance.

Returns

The Pyreadstat metadata.

Return type

metadata_container <pyreadstat:_readstat_parser.metadata_container

property column_metadata

Collection of metadata that describes each column or variable within the dataset.

Returns

A dict where the key is the name of the column/variable and the value is a ColumnMetadata object or compatible dict.

Return type

dict / None

property columns

The number of columns/variables in the dataset.

Return type

int

property file_encoding

The file encoding for the dataset.

Return type

str or None

property file_label

The file label.

Note

This property is irrelevant for SPSS, but is relevant for SAS data.

Return type

str / None

property notes

Set of notes related to the file.

Return type

str / None

property rows

The number of cases or rows in the dataset.

Return type

int

property table_name

The name of the data table.

Return type

str / None


ColumnMetadata

class ColumnMetadata(**kwargs)[source]

Object representation of the metadata that describes a column or variable form an SPSS file.

add_to_pyreadstat(pyreadstat)[source]

Update pyreadstat to include the metadata for this column/variable.

Parameters

pyreadstat (metadata_container <pyreadstat:_readstat_parser.metadata_container) –

The Pyreadstat metadata object where the ColumnMetadata data should be updated.

Returns

The Pyreadstat metadata.

Return type

metadata_container <pyreadstat:_readstat_parser.metadata_container

classmethod from_dict(as_dict: dict)[source]

Create a new ColumnMetadata instance from a dict representation.

Parameters

as_dict (dict) – The dict representation of the ColumnMetadata.

Returns

The ColumnMetadata instance.

Return type

ColumnMetadata

classmethod from_pyreadstat_metadata(name: str, as_metadata)[source]

Create a new ColumnMetadata instance from a Pyreadstat metadata object.

Parameters
  • name (str) – The name of the variable for which a ColumnMetadata instance should be created.

  • as_metadata (Pyreadstat.metadata_container) –

    The Pyreadstat metadata object from which the column’s metadata should be extracted.

Returns

The ColumnMetadata instance.

Return type

ColumnMetadata

to_dict()dict[source]

Generate a dict representation of the instance.

Return type

dict

property alignment

The alignment to apply to values from this column/variable when displaying data. Defaults to 'unknown'.

Accepts either 'unknown', 'left', 'center', or 'right' as either a case-insensitive str or a VariableAlignmentEnum.

Return type

VariableAlignmentEnum

property display_width

The maximum width at which the value is displayed. Defaults to 0.

Return type

int

property label

The label applied ot the column/variable.

Return type

str / None

property measure

A classification of the type of measure (or value type) represented by the variable. Defaults to 'unknown'.

Accepts either 'unknown', 'nominal', 'ordinal', or 'scale'.

Return type

VariableMeasureEnum

property missing_range_metadata

Collection of meta data that defines the numerical ranges that are to be considered missing in the underlying data.

Returns

list of dict with keys 'low' and 'high' for the low/high values of the range to apply when raw values are missing (None).

Return type

list of dict or None

property missing_value_metadata

Value used to represent misisng values in the raw data. Defaults to None.

Note

This is not actually relevant for SPSS data, but is an artifact for SAS and SATA data.

Return type

list of int or str / None

property name

The name of the column/variable.

Return type

str / None

property storage_width

The width of data to store in the data file for the value. Defaults to 0.

Rytpe

int

property value_metadata

Collection of values possible for the column/variable, with corresponding labels for each value.

Returns

dict whose keys are the values in the raw data and whose values are the labels for each value. May be None for variables whose value is not coded.

Return type

dict / None


Error Reference


Handling Errors

Stack Traces

Because the SPSS Converter produces exceptions which inherit from the standard library, it leverages the same API for handling stack trace information. This means that it will be handled just like a normal exception in unit test frameworks, logging solutions, and other tools that might need that information.


SPSS Converter Errors

SPSSConverterError (from ValueError)

class SPSSConverterError[source]

Base exception raised by the SPSS Converter library.


ColumnNameNotFoundError (from SPSSConverterError)

class ColumnNameNotFoundError[source]

Exception raised when a given column or variable name is not found.


InvalidDataFormatError (from SPSSConverterError)

class InvalidDataFormatError[source]

Exception raised when a value did not conform to an expected type.


InvalidLayoutError (from SPSSConverterError)

class InvalidLayoutError[source]

Exception raised when a layout value was not recognized.

Contributing to the SPSS Converter

Note

As a general rule of thumb, SPSS Converter applies PEP 8 styling, with some important differences.

Branch

Unit Tests

latest

Build Status (Travis CI) Code Coverage Status (Codecov) Documentation Status (ReadTheDocs)

Design Philosophy

SPSS Converter is meant to be a “beautiful” and “usable” library. That means that it should offer an idiomatic API that:

  • works out of the box as intended,

  • minimizes “bootstrapping” to produce meaningful output, and

  • does not force users to understand how it does what it does.

In other words:

Users should simply be able to drive the car without looking at the engine.

Style Guide

Basic Conventions

  • Do not terminate lines with semicolons.

  • Line length should have a maximum of approximately 90 characters. If in doubt, make a longer line or break the line between clear concepts.

  • Each class should be contained in its own file.

  • If a file runs longer than 2,000 lines…it should probably be refactored and split.

  • All imports should occur at the top of the file.

  • Do not use single-line conditions:

    # GOOD
    if x:
      do_something()
    
    # BAD
    if x: do_something()
    
  • When testing if an object has a value, be sure to use if x is None: or if x is not None. Do not confuse this with if x: and if not x:.

  • Use the if x: construction for testing truthiness, and if not x: for testing falsiness. This is different from testing:

    • if x is True:

    • if x is False:

    • if x is None:

  • As of right now, because we feel that it negatively impacts readability and is less-widely used in the community, we are not using type annotations.

Naming Conventions

  • variable_name and not variableName or VariableName. Should be a noun that describes what information is contained in the variable. If a bool, preface with is_ or has_ or similar question-word that can be answered with a yes-or-no.

  • function_name and not function_name or functionName. Should be an imperative that describes what the function does (e.g. get_next_page).

  • CONSTANT_NAME and not constant_name or ConstantName.

  • ClassName and not class_name or Class_Name.

Design Conventions

  • Functions at the module level can only be aware of objects either at a higher scope or singletons (which effectively have a higher scope).

  • Functions and methods can use one positional argument (other than self or cls) without a default value. Any other arguments must be keyword arguments with default value given.

    def do_some_function(argument):
      # rest of function...
    
    def do_some_function(first_arg,
                         second_arg = None,
                         third_arg = True):
      # rest of function ...
    
  • Functions and methods that accept values should start by validating their input, throwing exceptions as appropriate.

  • When defining a class, define all attributes in __init__.

  • When defining a class, start by defining its attributes and methods as private using a single-underscore prefix. Then, only once they’re implemented, decide if they should be public.

  • Don’t be afraid of the private attribute/public property/public setter pattern:

    class SomeClass(object):
      def __init__(*args, **kwargs):
        self._private_attribute = None
    
      @property
      def private_attribute(self):
        # custom logic which  may override the default return
    
        return self._private_attribute
    
      @setter.private_attribute
      def private_attribute(self, value):
        # custom logic that creates modified_value
    
        self._private_attribute = modified_value
    
  • Separate a function or method’s final (or default) return from the rest of the code with a blank line (except for single-line functions/methods).

Documentation Conventions

We are very big believers in documentation (maybe you can tell). To document SPSS Converter we rely on several tools:

Sphinx 1

Sphinx 1 is used to organize the library’s documentation into this lovely readable format (which is also published to ReadTheDocs 2). This documentation is written in reStructuredText 3 files which are stored in <project>/docs.

Tip

As a general rule of thumb, we try to apply the ReadTheDocs 2 own Documentation Style Guide 4 to our RST documentation.

Hint

To build the HTML documentation locally:

  1. In a terminal, navigate to <project>/docs.

  2. Execute make html.

When built locally, the HTML output of the documentation will be available at ./docs/_build/index.html.

Docstrings
  • Docstrings are used to document the actual source code itself. When writing docstrings we adhere to the conventions outlined in PEP 257.

Dependencies

Python 3.x

* Pandas v0.24 or higher
* Pyreadstat v1.0 or higher
* OpenPyXL v.3.0.7 or higher
* PyYAML v3.10 or higher
* simplejson v3.0 or higher

Preparing Your Development Environment

In order to prepare your local development environment, you should:

  1. Fork the Git repository.

  2. Clone your forked repository.

  3. Set up a virtual environment (optional).

  4. Install dependencies:

spss-converter/ $ pip install -r requirements.txt

And you should be good to go!

Ideas and Feature Requests

Check for open issues or create a new issue to start a discussion around a bug or feature idea.

Testing

If you’ve added a new feature, we recommend you:

  • create local unit tests to verify that your feature works as expected, and

  • run local unit tests before you submit the pull request to make sure nothing else got broken by accident.

See also

For more information about the SPSS Converter testing approach please see: Testing SPSS Converter

Submitting Pull Requests

After you have made changes that you think are ready to be included in the main library, submit a pull request on Github and one of our developers will review your changes. If they’re ready (meaning they’re well documented, pass unit tests, etc.) then they’ll be merged back into the main repository and slated for inclusion in the next release.

Building Documentation

In order to build documentation locally, you can do so from the command line using:

spss-converter/ $ cd docs
spss-converter/docs $ make html

When the build process has finished, the HTML documentation will be locally available at:

spss-converter/docs/_build/html/index.html

Note

Built documentation (the HTML) is not included in the project’s Git repository. If you need local documentation, you’ll need to build it.

Contributors

Thanks to everyone who helps make SPSS Converter useful:

Testing the SPSS Converter

Testing Philosophy

Note

Unit tests for the SPSS Converter are written using pytest 1 and a comprehensive set of test automation are provided by tox 2.

There are many schools of thought when it comes to test design. When building SPSS Converter, we decided to focus on practicality. That means:

  • DRY is good, KISS is better. To avoid repetition, our test suite makes extensive use of fixtures, parametrization, and decorator-driven behavior. This minimizes the number of test functions that are nearly-identical. However, there are certain elements of code that are repeated in almost all test functions, as doing so will make future readability and maintenance of the test suite easier.

  • Coverage matters…kind of. We have documented the primary intended behavior of every function in the SPSS Converter library, and the most-likely failure modes that can be expected. At the time of writing, we have about 85% code coverage. Yes, yes: We know that is less than 100%. But there are edge cases which are almost impossible to bring about, based on confluences of factors in the wide world. Our goal is to test the key functionality, and as bugs are uncovered to add to the test functions as necessary.

Test Organization

Each individual test module (e.g. test_read.py) corresponds to a conceptual grouping of functionality. For example:

  • test_read.py tests functions that de-serialize data from SPSS files, as defined in spss_converter/read.py

Certain test modules are tightly coupled, as the behavior in one test module may have implications on the execution of tests in another. These test modules use a numbering convention to ensure that they are executed in their required order, so that test_1_NAME.py is always executed before test_2_NAME.py.

Configuring & Running Tests

Installing with the Test Suite

$ pip install spss-converter[dev]

See also

When you create a local development environment, all dependencies for running and extending the test suite are installed.

Command-line Options

The SPSS Converter does not use any custom command-line options in its test suite.

Tip

For a full list of the CLI options, including the defaults available, try:

spss-converter $ cd tests/
spss-converter/tests/ $ pytest --help

Configuration File

Because the SPSS Converter has a very simple test suite, we have not prepared a pytest.ini configuration file.

Running Tests

tests/ $ pytest
tests/ $ pytest tests/test_module.py
tests/ $ pytest tests/test_module.py -k 'test_my_test_function'

Skipping Tests

Note

Because of the simplicity of the SPSS Converter, the test suite does not currently support any test skipping.

Incremental Tests

Note

The SPSS Converter test suite does support incremental testing using, however at the moment none of the tests designed rely on this functionality.

A variety of test functions are designed to test related functionality. As a result, they are designed to execute incrementally. In order to execute tests incrementally, they need to be defined as methods within a class that you decorate with the @pytest.mark.incremental decorator as shown below:

@pytest.mark.incremental
class TestIncremental(object):
    def test_function1(self):
        pass
    def test_modification(self):
        assert 0
    def test_modification2(self):
        pass

This class will execute the TestIncremental.test_function1() test, execute and fail on the TestIncremental.test_modification() test, and automatically fail TestIncremental.test_modification2() because of the .test_modification() failure.

To pass state between incremental tests, add a state argument to their method definitions. For example:

@pytest.mark.incremental
class TestIncremental(object):
    def test_function(self, state):
        state.is_logged_in = True
        assert state.is_logged_in = True
    def test_modification1(self, state):
        assert state.is_logged_in is True
        state.is_logged_in = False
        assert state.is_logged_in is False
    def test_modification2(self, state):
        assert state.is_logged_in is True

Given the example above, the third test (test_modification2) will fail because test_modification updated the value of state.is_logged_in.

Note

state is instantiated at the level of the entire test session (one run of the test suite). As a result, it can be affected by tests in other test modules.

1

https://docs.pytest.org/en/latest/

2

https://tox.readthedocs.io

Release History


Release 0.1.1

Build Status (Travis CI) Code Coverage Status (Codecov) Documentation Status (ReadTheDocs)
  • Adjusted encoding of requirements files.


Release 0.1.0

Build Status (Travis CI) Code Coverage Status (Codecov) Documentation Status (ReadTheDocs)
  • First public release

Glossary

Metadata

A collection of information that allows a human being to understand what raw data represents. Think of it as a “data map” that tells you a) what to expect within the raw data stored in a given format, b) what that data actually means / signifies.

Multiple Response Set

A way of representing “select all answers that apply” survey questions in SPSS data, where each answer maps to its own variable/column in the raw data, but the set of variables/columns should be grouped within the multiple response set.

Warning

Because Pyreadstat does not yet support Multiple Response Sets, the SPSS Converter also does not support them.

SPSS Converter License

MIT License

Copyright (c) 2021 Insight Industry Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The SPSS Converter is a simple utility that facilitates the easy conversion of SPSS data to / from a variety of formats, including:


Installation

To install the SPSS Converter, just execute:

$ pip install spss-converter

Dependencies

Python 3.x

* Pandas v0.24 or higher
* Pyreadstat v1.0 or higher
* OpenPyXL v.3.0.7 or higher
* PyYAML v3.10 or higher
* simplejson v3.0 or higher

Why the SPSS Converter?

If you work with SPSS data in the Python ecosystem, you probably use a combination of two or three key libraries: Pandas, Pyreadstat, and savReaderWriter. All three libraries are vital tools, incredibly well-constructed, designed, and managed. But over the years, I have found that converting from SPSS to other file formats using these libraries requires some fairly repetitive boilerplate code. So why not make it easier?

The SPSS Converter library is a simple wrapper around the Pyreadstat and Pandas libraries that provides a clean and simple API for reading data files in a variety of formats and converting them to a variety of formats. The semantics are super simple, and should be as simple as: spss_converter.to_csv('my-spss-file.sav') or spss_converter.from_json('my-json-file.json').

Key SPSS Converter Features

  • With one function call, convert an SPSS file into:

  • With one function call, create an SPSS data file from data in:

  • With one function call, generate a Pythonic data map or meta-data collection from your SPSS data file.

  • Decide which variables (columns) you want to include / exclude when doing your conversion.

SPSS Converter vs Alternatives

The SPSS Converter library is a simple wrapper around the Pyreadstat and Pandas libraries that simplifies the syntax for converting between different file formats.

While I am (I think understandably) biased in favor of the SPSS Converter, there some perfectly reasonable alternatives:

Obviously, since the SPSS Converter is just a wrapper around Pyreadstat and Pandas, you can simply call their functions directly.

Both libraries are excellent, stable, and use fairly straightforward syntax. However:

  • using those libraries directly does double the number of function calls you need to make to convert between different data formats, and

  • those libraries (and Pyreadstat in particular) provide limited validation or Pythonic object representation (less “batteries included” in its syntactical approach).

Of course, these differences are largely stylistic in nature.

Tip

When to use it?

Honestly, since initially building this wrapper I rarely use Pyreadstat and Pandas directly. Mostly, this is a matter of syntactical taste and personal preference.

However, I would definitely look to those libraries directly if I were:

  • writing this kind of wrapper

  • working in older versions of Python (< 3.7)

  • working with other formats of data than SPSS

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
from spss_converter import read, write

# SPSS File to CSV
read.to_csv('my-spss-file.sav',
            target = 'my-csv-file.csv')

# CSV to SPSS File
write.from_csv('my-csv-file.csv',
               target = 'my-spss-file.sav')

# SPSS File to Excel file
read.to_excel('my-spss-file.sav',
              target = 'my-excel-file.xlsx')

# Excel to SPSS file
write.from_excel('my-excel-file.xlsx',
                 target = 'my-spss-file.sav')

# ... similar pattern for other formats
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
import pyreadstat
import pandas

# SPSS File to CSV
df, metadata = pyreadstat.read_sav('my-spss-file.sav')
csv_file = df.to_csv('my-csv-file.csv')

# CSV to SPSS file
df = pandas.read_csv('my-csv-file.csv')
spss_file = pyreadstat.write_sav(df,
                                 'my-spss-file.sav')

# SPSS File to Excel File
df, metadata = pyreadstat.read_sav('my-spss-file.sav')
excel_file = df.to_excel('my-excel-file.xlsx')

# Excel file to SPSS file
df = pandas.read_excel('my-excel-file.xlsx')
spss_file = pyreadstat.write_sav(df,
                                 'my-spss-file.sav')

# .. similar pattern for other formats

The savReaderWriter library is a powerful library for converting SPSS data to/from different formats. Its core strength is its ability to get very granular metadata about the SPSS data and to sequentially iterate through its records.

However, the library has three significant limitations when it comes to format conversion:

  • The library only provides read and write access for SPSS data, and this means that you would have to write the actual “conversion” logic yourself. This can get quite complicated, particularly when dealing with data serialization challenges.

  • The library depends on the SPSS I/O module, which is packaged with the library. This module has both licensing implications and is a “heavy” module for distribution.

  • The library’s most-recent commits date back to 2017, and it would seem that it is no longer being actively maintained.

Tip

When to use it?

  • When you actually need to dive into the data at the level of particular cases or values.

  • When your data has Multiple Response Sets, which are not (yet) supported by either Pyreadstat or the SPSS Converter.


Questions and Issues

You can ask questions and report issues on the project’s Github Issues Page


Contributing

We welcome contributions and pull requests! For more information, please see the Contributor Guide.


Testing

We use TravisCI for our build automation, Codecov.io for our test coverage, and ReadTheDocs for our documentation.

Detailed information about our test suite and how to run tests locally can be found in our Testing Reference.


License

The SPSS Converter is made available under an MIT License.